Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 45(12): 1993-2006, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326885

RESUMO

Rapid increase in population and development in industry causes many problems such as microbial contaminations and chronic diseases such as diabetes. Materials synthesized at nanoscale are novel antidiabetic and antimicrobial agents. ZnO nanoparticles with macropores characteristics are synthesized by green methods. Turmeric, clove buds and green tea extracts are used as additives. X-ray diffraction results confirmed the hexagonal wurtzite structure of ZnO nanoparticles and crystallinity was quit high in case of green tea extract. Sample synthesized with clove shows relatively higher crystallite size (10.64) which is pertaining to variation in Zn2+ and OH- ions. The nanoparticles are more or less spherical in nature, macropores and clustered together revealed by SEM images. Macroporosity of the sample was further confirmed by nitrogen adsorption-desorption isotherm. The deep absorption band at 605 cm-1 in FTIR spectra attributed the wurtzite-type ZnO. The major dominating sharp peak was detected at 437 cm-1 in Raman spectra which is a feature of the wurtzite hexagonal phase ZnO. UV-Vis spectra showed red shift from wavelength 362 to 375 nm with different plant extracts. Impedance analysis showed a high dielectric constant and low tangent loss in case of green tea extract. ZnO synthesized using green tea exhibited ~ 95% α-glucosidase inhibition activity and 91% α-amylase inhibition activity. Antibacterial results revealed that synthesized ZnO nanoparticles showed activity against Bacillus subtilis and E. coli with inhibition zone 35 mm and 29 mm, respectively.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Hipoglicemiantes , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Chá , Química Verde/métodos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Phys Chem Chem Phys ; 22(44): 25769-25779, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33147304

RESUMO

Effective detection of NO2 and NH3 gases at room temperature (RT) is critical for environmental monitoring and protection. Here, graphene-based gas sensors (Cu/Gr device) of single layer graphene decorated by 6, 8 and 10 nm thick Cu layers with graphene instead of conventional metal as interdigital electrodes are designed and fabricated. The RT performance for both NO2 and NH3 detection can be greatly enhanced by UV light illumination which is closely related to the thickness of Cu layers in which the device with 8 nm thickness (8 nm Cu/Gr device) exhibits the best performances. Analysis of XPS reveals that Cu is partly oxidized to Cu+ and Cu2+ for 6 nm with extra Cuδ+ (1 < δ < 2) for 8 and 10 nm. The contents and distributions of copper oxides and copper in Cu layers influence the catalytic effects and the heterojunction barrier and thus the performances. The RT responses of -30.9% and -8.1% for 5 and 0.3 ppm NO2, and of +29.1% and +5.9% for 105 and 10 ppm NH3 are achieved for the 8 nm Cu/Gr device, respectively. The limits of detection (LODs) for NO2 and NH3 are 12 ppb and 17 ppb, respectively. The sensing mechanisms are discussed in terms of density functional theory (DFT) calculations and energy band diagrams. The study demonstrates an effective solution of improving the device performance by modifying the device configuration and incorporating combined oxides naturally oxidized, which provides the novel design alternatives for high performance sensors.

3.
Phys Chem Chem Phys ; 22(29): 16701-16711, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658227

RESUMO

The switch in the sensing mode for better identification of donor/acceptor gases with simultaneous enhancement of the sensing performance at a fixed working temperature particularly room temperature (RT) is quite challenging for gas sensors. Herein, TiO2/graphene hybrid field effect transistor (FET) sensors (TiO2/GFET) with varied hybrid areas are presented. Superior sensing and recovery performances for NH3 are achieved through sensing mode switch via gate biasing. 16.40% response and full recovery for 25 ppm NH3 are achieved for TiO2/GFET sensors with 100% titanium dioxide coverage (D100) at RT (27 °C) with 15-20% humidity upon switching sensing mode from p- to n via gate biasing. Full recovery is attributed to the Coulomb interaction between charged polar donor molecules and positively polarized surface which is enhanced by the switch from p- to n-mode. The humidity can enhance response up to -35.48% for 25 ppm NH3 with full recovery in n-mode for D100. D100 shows superior selectivity towards NH3 against both electron-acceptor NO2 and several other electron-donor analytes. The sensing behaviors for NH3 are well elucidated using energy band diagrams based on the experimental results. This study proposes a novel idea for performance improvement of FET based sensors with p- and n-type hybrid sensing materials through p (n)- to n (p)-mode switch assisted by gate biasing by incorporating suitable electron (hole) rich materials to compensate holes (electrons) in p (n)-type materials for electron donor (acceptor) gas detection.

4.
ACS Appl Mater Interfaces ; 12(7): 8411-8421, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31976643

RESUMO

High sensitivity, low limit of detection (LOD), and short response and recovery times at room temperature (RT) are critical for gas sensors. For NO2, different binary metal oxide-based sensors were developed to achieve superior performance at elevated temperatures instead of RT. Herein, we report on CuO@CuO and Cu3Mo2O9@CuO sensors with CuO and Cu3Mo2O9 micro/nanorods vertically aligned on the CuO layers, which were directly fabricated using a facile, low-cost, and catalyst-free chemical vapor deposition (CVD) technique. Their sensing performance tests revealed that the Cu3Mo2O9@CuO p-p heterojunction sensors exhibited a high response of 160% to 5 ppm NO2, an excellent sensitivity of 50% ppm-1, a low LOD of 2.30 ppb, a short response time of 49 s, and a rapid recovery of 241 s at RT, obviously better than those for CuO@CuO sensors. The superior performance of Cu3Mo2O9@CuO sensors could be attributed to the Schottky heterojunction formed between p-Cu3Mo2O9 micro/nanorods and p-CuO films, the catalytic effect, and the anisotropic nature of Cu3Mo2O9 micro/nanorods. This study not only provides a simple, low-cost, and batchable fabrication method of homo/heterojunction sensors with micro/nanorods vertically aligned on films but also opens an avenue for sensor design by tuning the Schottky barrier height to enhance RT performance.

5.
Adv Sci (Weinh) ; 6(11): 1900177, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179223

RESUMO

Accurate design of high-performance 3D surface-enhanced Raman scattering (SERS) probes is the desired target, which is possibly implemented with a prerequisite of quantifying formidable multiple coupling effects involved. Herein, by combining theory and experiments on 3D periodic Au/SiO2 nanogrid models, a generalized methodology of accurately designing high performance 3D SERS probes is developed. Structural symmetry, dimensions, Au roughness, and polarization are successfully correlated quantitatively to intrinsic localized electromagnetic field (EMF) enhancements by calculating surface plasmon polariton (SPP), localized surface plasmon resonance (LSPR), optical standing wave effects, and their couplings theoretically, which is experimentally verified. The hexagonal SERS probes optimized by this methodology realize over two orders of magnitudes (405 times) improvement of detection limit for Rhodamine 6G model molecules (2.17 × 10-11 m) compared to the unoptimized probes with the same number density of hot spots, an enhancement factor of 3.4 × 108, a uniformity of 5.52%, and are successfully applied to the detection of 5 × 10-11 m Hg ions in water. This unambiguously results from the Au roughness-independent extra 144% contribution of LSPR effects excited by SPP interference waves as secondary sources, which is very unusual to be beyond the conventional recognition.

6.
Small ; 14(17): e1704429, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29611286

RESUMO

Defects are detrimental for optoelectronics devices, such as stacking faults can form carrier-transportation barriers, and foreign impurities (Au) with deep-energy levels can form carrier traps and nonradiative recombination centers. Here, self-catalyzed p-type GaAs nanowires (NWs) with a pure zinc blende (ZB) structure are first developed, and then a photodetector made from these NWs is fabricated. Due to the absence of stacking faults and suppression of large amount of defects with deep energy levels, the photodetector exhibits room-temperature high photoresponsivity of 1.45 × 105 A W-1 and excellent specific detectivity (D*) up to 1.48 × 1014 Jones for a low-intensity light signal of wavelength 632.8 nm, which outperforms previously reported NW-based photodetectors. These results demonstrate these self-catalyzed pure-ZB GaAs NWs to be promising candidates for optoelectronics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...